Big-Oh Notation 2014 IOI Camp 1

Robert Spencer

December 11, 2013

Introduction

How long will the following code take to run?

Introduction

How long will the following code take to run?

$$
\begin{aligned}
& p=0 \\
& \text { for } i=1 \text { to } 10 * * 6 \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& \text { for } k=1 \text { to } j \text { do } \\
& p+=k \\
& \text { print } p
\end{aligned}
$$

Introduction

How long will the following code take to run?

$$
\begin{aligned}
& p=0 \\
& \text { for } i=1 \text { to } 10 * * 6 \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& \quad \text { for } k=1 \text { to } j \text { do } \\
& \quad p+=k \\
& \text { print } p
\end{aligned}
$$

A minute? An hour? How about 31 millenia?

Competition Application

- Obviously, in competitions we are interested in how quickly a solution runs.

1 second
2 seconds

Competition Application

- Obviously, in competitions we are interested in how quickly a solution runs.

1 second
2 seconds

- Different languages differ by small amounts. On average, can do the same number of operations a second.

Competition Application

- Obviously, in competitions we are interested in how quickly a solution runs.

1 second
2 seconds

- Different languages differ by small amounts. On average, can do the same number of operations a second.
- Good rule of thumb: If you are doing more than 1000000 things a second, you have a problem.

Rules for Calculating Order of Magnitude

- Ignore constants:

$$
O\left(3 n^{2}\right)=O\left(n^{2}\right)
$$

Rules for Calculating Order of Magnitude

- Ignore constants:

$$
O\left(3 n^{2}\right)=O\left(n^{2}\right)
$$

- This means that all logarithms are whatever base you want because they differ by a constant. E.g. binary searches (complexity $O\left(\log _{2} n\right)$) are the same order as ternary searches (complexity $O\left(\log _{3} n\right)$).

Rules for Calculating Order of Magnitude

- Ignore constants:

$$
O\left(3 n^{2}\right)=O\left(n^{2}\right)
$$

- This means that all logarithms are whatever base you want because they differ by a constant. E.g. binary searches (complexity $O\left(\log _{2} n\right)$) are the same order as ternary searches (complexity $O\left(\log _{3} n\right)$).
- Take the biggest term:

$$
O\left(n^{2}+n \log n\right)=O\left(n^{2}\right)
$$

Rules for Calculating Order of Magnitude

- Ignore constants:

$$
O\left(3 n^{2}\right)=O\left(n^{2}\right)
$$

- This means that all logarithms are whatever base you want because they differ by a constant. E.g. binary searches (complexity $O\left(\log _{2} n\right)$) are the same order as ternary searches (complexity $O\left(\log _{3} n\right)$).
- Take the biggest term:

$$
O\left(n^{2}+n \log n\right)=O\left(n^{2}\right)
$$

- Worst case bound: linear search is $O(n)$ even though it may only take one step.

Constant Time

Some operations take "constant time": they are independant on the size of any parameter.

Constant Time

Some operations take "constant time": they are independant on the size of any parameter.
Example: accessing values from an array
array[i] += array [3]

Constant Time

Some operations take "constant time": they are independant on the size of any parameter.
Example: accessing values from an array
array[i] += array [3]

Some problems can even be solved in constant time!

- Problems with formulae (eg "Find the number of numbers less than n with their third bit set to 1 in binary expansion").
- Problems that can be hard coded (eg "Find the nth prime where $\left.1 \leq n \leq 1000000^{\prime \prime}\right)$.

Classes of Big-Oh

From this we can work out various "classes" of Big-Oh values, and reasonable values of n.

Order	Reasonable value for N
$O(N)$	1000000
$O\left(N^{2}\right)$	1000
$O\left(N^{3}\right)$	100
$O(N \log N)$	50000

Example 1

What is the complexity of this algorithm?

```
for i = 1 to n do
    for j = 1 to i do
    if a[j] > a[j+1] then
        swap(a[j], a[j+1])
```


Example 1

What is the complexity of this algorithm?

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& \text { if } a[j]>a[j+1] \text { then } \\
& \operatorname{swap}(a[j], a[j+1])
\end{aligned}
$$

Answer: $O\left(n^{2}\right)$

Example 2

What is the complexity of this algorithm?

```
begin = 1
end = 2
count = 0
while end < n:
    if a[begin] == a[end] then
        count++
    if a[begin] > a[end] then
        end++
    else
        begin++
```


Example 2

What is the complexity of this algorithm?

```
begin = 1
end = 2
count = 0
while end < n:
    if a[begin] == a[end] then
        count++
    if a[begin] > a[end] then
        end++
    else
        begin++
```

Answer: $O(n)$

Problem Solving with Big-Oh

How can we use Big-Oh to solve problems?

Problem Solving with Big-Oh

How can we use Big-Oh to solve problems?
The evaluator has to run in time. Thus we can see what Big-Oh class the evaluator uses from the constraints. This gives us hints on the problem solution.

Problem Solving with Big-Oh

How can we use Big-Oh to solve problems?
The evaluator has to run in time. Thus we can see what Big-Oh class the evaluator uses from the constraints. This gives us hints on the problem solution.

- If we are given $1<n<50000$, we can reasonably assume a solution with $O(n \log n)$, e.g. sorting

Problem Solving with Big-Oh

How can we use Big-Oh to solve problems?
The evaluator has to run in time. Thus we can see what Big-Oh class the evaluator uses from the constraints. This gives us hints on the problem solution.

- If we are given $1<n<50000$, we can reasonably assume a solution with $O(n \log n)$, e.g. sorting
- If all constraints are small, e.g. $1<n, m<20$, then a very inefficient solution is possible (think $O\left(n^{2} m^{3}\right)$).

Example 3

What is the complexity of this algorithm?

$$
\begin{aligned}
& \text { hi }=\mathrm{n} \\
& \text { lo }=0 \\
& \text { while guess }(\text { (hi+lo) /2) is false } \\
& \text { if (hi+lo)/2 too high } \\
& \text { hi }=(\text { hi+lo }) / 2-1 \\
& \text { else } \\
& \quad l o=(h i+l o) / 2+1
\end{aligned}
$$

Example 3

What is the complexity of this algorithm?

$$
\begin{aligned}
& \text { hi }=\mathrm{n} \\
& \text { lo }=0 \\
& \text { while guess }(\text { (hi+lo) /2) is false } \\
& \text { if (hi+lo)/2 too high } \\
& \text { hi }=(\text { hi+lo }) / 2-1 \\
& \text { else } \\
& \quad l o=(h i+l o) / 2+1
\end{aligned}
$$

Answer: $O(\log n)$

Example 4

What is the complexity of this algorithm?

```
def recurse (left, right)
    for i = left to right do
        a[i]++
    middle = (left+right)/2
    if left < middle then
    recurse(left, middle)
```


Example 4

What is the complexity of this algorithm?

```
def recurse (left, right)
    for i = left to right do
        a[i]++
    middle = (left+right)/2
    if left < middle then
        recurse(left, middle)
```

Answer: $O(n)$

Example 5

What is the complexity of this algorithm?

```
def recurse (left, right)
    for i = left to right do
        a[i]++
    middle = (left+right)/2
    if left < middle then
        recurse(left, middle)
    if middle + 1 < right then
        recurse(middle + 1, right);
```


Example 5

What is the complexity of this algorithm?

```
def recurse (left, right)
    for i = left to right do
        a[i]++
    middle = (left+right)/2
    if left < middle then
        recurse(left, middle)
    if middle + 1 < right then
        recurse(middle + 1, right);
```

Answer: $O(n \log n)$

Well Known Algorithms

Here are the complexities of some well known algorithms:

Algorithm	Complexity
Sorting (in general)	$O(n \log n)$
Binary Search	$O(\log n)$
DFS (visit once only)	$O(V+E)$
BFS (visit once only)	$O(V+E)$
Basic Dijkstra's	$O((E+V) \log V)$
Kruskal's and basic Prim's	$O(E \log E)$
Naive substring finding	$O(n k)$
Knuth-Morris-Pratt substring finding	$O(n+k)$
Rabin-Karp substring finding	$O(n+k)$

